
Abstract Tremor is a clinical feature characterized by

oscillations of a part of the body. The detection and

study of tremor is an important step in investigations

seeking to explain underlying control strategies of the

central nervous system under natural (or physiological)

and pathological conditions. It is well established that

tremorous activity is composed of deterministic and

stochastic components. For this reason, the use of

digital signal processing techniques (DSP) which take

into account the nonlinearity and nonstationarity of

such signals may bring new information into the signal

analysis which is often obscured by traditional linear

techniques (e.g. Fourier analysis). In this context, this

paper introduces the application of the empirical mode

decomposition (EMD) and Hilbert spectrum (HS),

which are relatively new DSP techniques for the

analysis of nonlinear and nonstationary time-series, for

the study of tremor. Our results, obtained from the

analysis of experimental signals collected from 31 pa-

tients with different neurological conditions, showed

that the EMD could automatically decompose ac-

quired signals into basic components, called intrinsic

mode functions (IMFs), representing tremorous and

voluntary activity. The identification of a physical

meaning for IMFs in the context of tremor analysis

suggests an alternative and new way of detecting tre-

morous activity. These results may be relevant for

those applications requiring automatic detection of

tremor. Furthermore, the energy of IMFs was visual-

ized as a function of time and frequency by means of

the HS. This analysis showed that the variation of en-

ergy of tremorous and voluntary activity could be dis-

tinguished and characterized on the HS. Such results

may be relevant for those applications aiming to

identify neurological disorders. In general, both the HS

and EMD demonstrated to be very useful to perform

objective analysis of any kind of tremor and can

therefore be potentially used to perform functional

assessment.
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1 Introduction

Tremor is a rhythmic, involuntary muscular contrac-

tion characterized by oscillations of a part of the body

[6]. Although the most common types of tremor have

been subject of numerous studies, their mechanisms

and origins are still unknown [16, 19, 25].

Neurological disorders associated with aging are

often accompanied by tremor, which can affect various

parts of the body such as hands, head, facial structures,

tongue, trunk, and legs. Although the disorder is not
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life-threatening, it can be responsible for functional

disability and social embarrassment [12]. It is well

established that tremorous activity is composed of

deterministic and stochastic components [28].

The detection and quantification of tremor are of

clinical interest for diagnosis of neurological disorders

and objective evaluation of their treatment [15, 25, 27].

Methods based on the Fourier transform (FT) are

commonly employed for this purpose, specially be-

cause of the similarity between the tremor to a sine

wave [11]. For instance, the weighted Fourier linear

combiner (WFLC) [24] characterizes the tremor based

on its approximation by a sinusoidal waveform. An-

other example is the extraction of frequency parame-

ters from the power spectrum (based on the FT) of the

tremor for classification purposes [9–12, 25].

Some inherent drawbacks of techniques based on

the FT are pointed out in [1, 2]. First, the signal is

linearly decomposed as combination of sines and co-

sines. Second, the compromise between time and fre-

quency resolution of methods based on the FT may not

highlight the presence of local oscillations in the signal

which can have important physical meaning.

In order to overcome some of the limitations of the

FT, a number of approaches have been proposed and

used. Among them, the use of parametric analysis

methods, such as autoregressive (AR) models have

been successfully applied to the power spectrum esti-

mate of distinct biological signals [1]. The AR power

spectrum estimate involves estimating the model

parameters, referred to as AR coefficients. The defi-

nition of the number of AR coefficients (model order)

and also the selection of a technique (e.g. Yule-Walker

and Burg methods [1]) for their estimation influence

over the characteristics of the power spectrum. Fur-

thermore, it has been shown [1] that in some applica-

tions, for instance, in the analysis of heavily noise-

corrupted signals AR models may not be suitable for

an adequate signal modeling.

Recently, a novel technique for analysis of nonlinear

and nonstationary time-series was successfully applied

to investigations of seismological and biological signals

[3, 4, 17]. This technique was first introduced in [18],

and it is formed by two complementary tools, which

are called empirical mode decomposition (EMD) and

Hilbert spectrum (HS). The EMD decomposes any

arbitrary time-series into a set of components desig-

nated as intrinsic mode functions (IMFs). The main

aim of the EMD is to iteratively identify distinct time-

scales (or frequency bandwidths) from the data that

may have a physical meaning, e.g. IMFs may be related

to biological phenomena. The existence of such a

meaning is not guaranteed and an important issue in

any practical investigation applying this technique is to

define or identify it [18].

Once IMFs are extracted from the signal it is pos-

sible to analyze how their energy evolves as a function

of time and frequency on the HS. In contrast to the

spectrogram (based on the FT) the HS is a windowing

independent time–frequency representation that may

provide enough resolution in the signal analysis for

detection of events often obscured in a conventional

analysis. Examples showing the gain in resolution

provided by the HS when compared to the spectrogram

and scalogram (wavelets) are given in [3, 17, 18].

This paper introduces the application of the EMD

and HS as an alternative tool to the study of tremor.

First we show that in this context, IMFs have a

physical meaning, that is, single IMFs may represent

either voluntary or involuntary movement activity of

patients. The identification of such a physical mean-

ing for IMFs is relevant because it shows that the

method can automatically detect tremor. Note that

the automatic detection of tremor is an important

stage in systems that aim to control limb oscillations,

and also in biofeedback studies. Second, we show

that other physiological events that normally accom-

pany the tremor, e.g. spasms, may also be identified

in some IMFs.

In a further analysis we employ the HS to visualize

how the energy of IMFs varies as a function of time

and frequency. This study showed that the energy of

voluntary and involuntary movement activity could be

well distinguished on the HS. This result may be useful

for investigations that aim to classify distinct neuro-

logical disorders, as the precise characterization of the

energy of abnormal oscillations in limbs is a crucial

stage in these studies. Our results are based on an

extensive analysis of signals collected from 31 subjects

suffering from distinct neurological disorders and

executing different types of movements or tasks.

2 The Hilbert spectrum

The generation of the HS is performed in two steps.

First, the EMD decomposes the input time-series into a

set of functions designated as IMFs, and second those

functions are used for generation of a 3-D plot called

the HS.

2.1 The Empirical mode decomposition

The main aim of the EMD is to decompose a time-

series into a set of components or functions known as

570 Med Bio Eng Comput (2006) 44:569–582

123



IMFs. This class of function was defined by Huang

et al. [18]. To be considered as an IMF a time-series

has to satisfy two conditions: first, in the whole data set,

the number of extrema and the number of zero crossings

must be either equal or differ at most by one, and

second, at any point, the mean value of the envelope

defined by the local maxima and the envelope defined

by the local minima is zero.

Note that the decomposition of a time-series into

IMFs consists in the identification of the basic units

(IMFs) in that time-series. A practical procedure,

known as sifting process, is employed for this purpose.

It involves the following steps, leading to a decompo-

sition of the signal S(t) into its constituent IMFs:

1. x (an auxiliary variable) is set to the signal to be

analyzed and a variable k, which is the number of

estimated IMFs, is set to zero.

2. Splines are fitted to the upper extrema and the

lower extrema. This will define the lower (LE) and

upper envelopes (UE).

3. The average envelope, m, is calculated as the

arithmetic mean between UE and LE.

4. A candidate IMF, h, is estimated as the difference

between x and m.

5. If h does not fulfill the criteria defining an IMF, it is

assigned to the variable x and the steps 2–4 are

repeated. Otherwise, if h is an IMF then the pro-

cedure moves to step 6.

6. If h is an IMF it is saved as ck, where k is the kth

component.

7. The mean squared error, MSE, between two con-

secutive IMFs ck-1 and ck, is calculated, and this

value is compared to a stopping condition (usually

a very small value, i.e. 10–5).

8. If the stopping condition is not reached, the partial

residue, rk, is estimated as the difference between a

previous partial residue rk-1 and ck, and its content

is assigned to the dummy variable x and the steps

2–4 are repeated.

9. If the stopping condition is reached then the sifting

process is finalized and the final residue rfinal can be

estimated as the difference between S(t) and the

sum of all IMFs.

Note that the criterion used to state whether h is an

IMF or not is to verify if h satisfies the two conditions

that define an IMF.

An important feature of the sifting process is that it,

adaptively and based solely on the data, is able to find

appropriate time-scales that may reveal important

information embedded in the original signal. In fact,

single IMFs may have a physical meaning (i.e. may be

related to a biological phenomenon), and as already

highlighted an important issue in any practical appli-

cation is to determine the existence of this meaning.

2.2 Hilbert spectrum generation

Once IMFs are obtained as a result of the sifting pro-

cess, it is possible to generate the HS, or a 3-D plot

(time–frequency–energy) that represents the variation

of frequency and energy of IMFs over time. The notion

of frequency and energy for each IMF is obtained by

employing the concept of analytic signals.

An analytic signal is a complex signal with one-sided

spectrum that preserves all information contained in

the original signal [21]. Note that the representation of

a real signal as an analytical signal eliminates redun-

dancy, since the negative half of the signal frequency

spectrum containing redundant information with re-

spect to the positive half is eliminated. A very simple

way of estimating an analytical signal is by employing

the Hilbert transform [8]. The real part of an analytical

signal is the original input time-series, whereas its

complex component is the Hilbert transform of that

signal.

Given an analytic signal, Z(t), defined as

Z(t)=X(t)+iY(t)=a(t) ejh(t), where X(t) is the input time-

series and Y(t) the Hilbert transform of X(t), the fol-

lowing instantaneous attributes of Z(t) can be defined:

aðtÞ ¼ ½XðtÞ2 þ YðtÞ2�1=2 ð1Þ

hðtÞ ¼ arctan
YðtÞ
XðtÞ

� �
ð2Þ

xðtÞ ¼ dhðtÞ
dt

ð3Þ

where a(t) is the instantaneous amplitude, h(t) is the

instantaneous phase, and x(t) is the instantaneous

frequency.

With the definition of instantaneous attributes

above the HS, H(x,t), is generated as follows:

1. Estimate IMFs from the input signal.

2. Estimate the instantaneous attributes of each IMF.

3. Generate a 3-D plot, H(x,t), in which the ampli-

tude is contoured in the time–frequency plane.

In contrast to other time–frequency methods, the

HS does not define an explicit equation that maps a 1-

D time-series into a 3-D representation that provides

information about time, frequency, and energy

(amplitude).

From the HS it is also possible to estimate the

marginal Hilbert spectrum (MHS), h(x), which is de-

fined in Eq. 4.
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hðxÞ ¼
ZT

0

Hðx; tÞdt ð4Þ

2.3 Comments

It is relevant to note that the EMD is responsible for

estimating IMFs, which are a set of components in the

time domain that represent embedded oscillations in

the analyzed signal. The HS is a joint time–frequency

representation obtained through the application of the

Hilbert transform to IMFs. Therefore, the HS allows

for visualization of the contribution and variation of

the energy of all IMFs in a single plot. Such a repre-

sentation may be useful for identification of events,

represented by IMFs, not easily noted in the time do-

main. However, the EMD technique is completely

independent of the HS and can have different appli-

cations, e.g. signal filtering [3].

Furthermore, it is possible to estimate the HS of any

arbitrary time-series prior to its decomposition, how-

ever, in this case embedded oscillations in this signal

will not be visualized on the HS, making it difficult to

detect the presence of relevant physical events (e.g.

oscillations that may be related to a biological event).

2.4 Calibration of the Hilbert spectrum

and marginal Hilbert spectrum

In this section, a simple example regarding the analysis

of a synthetic signal (sine wave) is employed to illustrate

the application of the HS and MHS and also to compare

this technique with those based on the FT. Further

comparisons between HS and other time–frequency

distributions through the investigation of artificial,

electromyographic, and seismological signals are given

in [3, 17, 18].

The frequency of oscillation of the sine wave was

defined as fo=10 Hz, and it lasted for T=0.5 s and was

sampled at Fs=1,000 Hz. The HS and spectrogram of

this signal are shown in Fig. 1 (Example A), and its

MHS and power spectrum are presented in Fig. 2. In

contrast to the HS and MHS, in both estimates the

Fourier-based methods yielded energy spread around

the actual frequency of oscillation of the signal

(10 Hz).

In another example (see Fig. 1, Example B) some

discontinuities lasting 1 ms, which may represent a

failure in the analog-to-digital converter, were delib-

erately introduced in the signal shown in Fig. 1

(Example A). The resulting signal is shown in Fig. 1

(Example B). The visual inspection of this signal shows

Fig. 1 Example A: Hilbert
spectrum and spectrogram of
a sine wave oscillating at
10 Hz. Example B: Hilbert
spectrum and spectrogram of
a sine wave oscillating at
10 Hz with discontinuities at
0.1, 0.2, 0.3, and 0.4 s
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that the discontinuities cannot be visualized in time-

domain, however they are clearly perceived on the HS

(bright spots of energy around 0.1, 0.2, 0.3, and 0.4 s)

and are not detected on the spectrogram because of the

lack of resolution of this technique.

3 The experimental protocol

In order to assess tremor characteristics we studied its

behavior in 31 patients suffering from different

pathologies (Table 1). The average age of patients was

52.3 years old (ranging from 23 to 84 years old). All

patients provided their written consent for the experi-

ments.

The diagnosis of the condition of patients was given

by the neurological staff of the General Hospital of

Valencia (GHV, Spain) and the functional state of

patients was evaluated by means of the Faher scale

[14]. Ethical approval for this research has been gran-

ted by the Ethical Committee of the GHV.

3.1 Sensors

There is a continuous need to develop miniaturized

systems with low energy consumption for biomechan-

ical analysis that can extract a wide range of parame-

ters from human motion. Kinematic data obtained by

biomechanical studies have been increasingly used and

required in active prosthetics/orthotics control systems

[26].

The tremor was detected by a customized sensor [22,

26], which is based on the combination of two inde-

pendent gyroscopes placed distally and proximally to

the joint of interest. The joint angular speed is ob-

tained by subtraction of the angular speed measured by

one gyroscope from the angular speed measured by the

other one. The weight of the system is roughly 15 g

[26], which is a low-mass system when compared to

other sensors used in the field, for instance, Elble [13]

employed a 15 g triaxial piezoresistive accelerometer

secured to a 57 g plastic splint in his experiments. The

use of a low-mass sensor is important to reduce the

effect of low-pass filtering on the detected signal.

Further discussion about this issue is presented in [13,

26].

This system could measure the upper limb joint

angle, velocity and acceleration without any external

reference. Unlike accelerometers, the measurement of

angular velocity is not influenced by gravity and they

are in general accurate both in frequency and ampli-

tude.

The main advantages of this system are that it is

light, cheap, and does not cause any discomfort to

subjects thus providing a powerful tool to monitor

biomechanical variables during physiological tremor

movements.

3.1.1 Gyroscope placement

Since gyroscope provides absolute angular velocity in

its active axis, the combination of two independent

gyroscopes was used. They were placed distally and

proximally to the joint of interest. Gyroscopes could be

placed anywhere along the same plane on the same

segment providing almost identical signals. The gyro-

scopes could therefore be attached to a convenient

position in order to avoid areas of skin and muscle

movement [30]. Figure 3 illustrates the placement of

the gyroscopes.
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Fig. 2 Comparison between MHS and power spectrum esti-
mated from the signal shown in Fig. 1 (Example A). The actual
frequency of oscillation of this signal is marked with a solid line
at 10 Hz

Table 1 Description of the type of disorders and tremors
investigated. The way that patients expressed the tremor is also
included, for instance, patients with essential disorder expressed
the tremor during voluntary muscle contraction

Disorder Type of tremor Number
of patients

Essential Postural and kinetic 21
Cerebellar Kinetic 4
Parkinson Postural and rest 3
Patients with unclear

tremor
Postural, kinetic and rest 3
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With gyroscopes positioned as indicated in Fig. 3,

the following movements of the upper limb were

measured:

• Elbow flex-extension

• Forearm pron-supination

• Wrist flex-extension

• Wrist deviation

These articulations were selected because they are

considered the most important articulations in the

kinematic chain of the upper limb [20, 31].

3.2 Tasks

Six different tasks were employed for excitation of

tremor. They are defined as follows:

1. Rest: The patient was asked to keep the arms in a

rest position with the hands resting on the thighs

(elbow flexed at 90� and the shoulder at 0� and

hands in pronation).

2. Reaching for an object: Patients had to point at a

target (at the shoulder height) located in front of

them. They were asked to perform the movement

slowly. The distance between the shoulder and the

tip of the middle finger was 85% of upper limb

length.

3. Drawing a spiral: The patient was asked to follow

with the index finger a spiral drawn in a sheet of

paper fixed in front of them.

4. Arm outstretched: The patient was asked to

maintain the upper limbs outstretched in front of

them, hands in supination, against the gravity, for

30 s.

5. Touching nose: The patient was asked to touch the

nose with the index finger, starting from a rest

position (hand on the thigh). They had to keep the

finger on the nose during 10 s.

6. Moving a cup: The patient was asked to take a rigid

cup with one hand and move it to the left and to

the right. They were sitting near to a white table.

The target locations were identified by black tape

fixed on the table. The tape was fixed along a line

passing through positions defined as DEL and

DER. The patient was first asked to maintain the

elbow flexed at 90� and the shoulder at 0�, close to

the trunk in the frontal plane. Hands were in

pronation on the table with fingers extended. The

targets were located at 10 cm on the left and on the

right from the extremity of the third finger (DE left

and DE right). Areas of the position of the cup

were pre-drawn with a red marker.

In all tasks the patient was sitting on a chair. This set

of tasks aims to activate all different types of tremor.

Figure 4 illustrates a patient performing the six tasks

presented above.

4 Data analysis

Figure 5 depicts the sequence of steps for data analysis.

The resulting movement profile (or the collected signal

x) was sampled at 400 Hz and filtered using a fifth

order low-pass FIR filter with cutoff frequency set to

20 Hz. This is relevant for attenuation of the influence

of any high-frequency noise on the digitized signal y.

In a further step, y was manually decomposed into

tremor and voluntary activity by means of a digital

pass-band Butterworth filter. Note that the word

manually (or manual) in this paper refers to the ad hoc

setting of the the cutoff frequencies of the digital filter

in contrast to an automatic setting provided by adap-

tive methods like the EMD.

For estimation of the voluntary movement, VMref,

the cutoff frequencies of this filter were set to 0–2 Hz.

The cutoff frequencies employed for detection of the

tremor, Tref, were 2–20 Hz. Previous investigation of

this data set showed that the tremor activity was lim-

ited between 3 and 8 Hz [7], and that voluntary

movements were always below 2 Hz for the tasks de-

scribed above. It is well established in the literature of

tremor that the voluntary movement and tremor

movement used to be separated in frequency. Tremor

(2–12 Hz) tends to be at higher frequencies than vol-

untary (0–2 Hz) movements [12, 24]. Note that those

digital filters do not introduce phase lag in the filtered

signal.

x1 x2

z2

y1 y2

z3
y3

y4

Gyroscope 1
Gyroscope 2

Gyroscope 3

Gyroscope 4

Gyroscope 1: Placed over the third metacarpal
Gyroscope 2: Placed over the edge of the forearm
Gyroscope 3: Placed bellow the olecranon process
Gyroscope 4: Placed over the olecranon process

Fig. 3 Strategy for positioning of sensors on the upper limb of
patients. The weight of the system is roughly 15 g and do not
influence the tremorous movement of the patient
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The time-series y was also automatically decom-

posed via EMD. This decomposition yielded IMFs

from which it was possible to identify the tremor Temd

and voluntary movement VMemd. A comparison be-

tween Temd and Tref was performed and resulted in the

generation of the estimated square error signal

ê ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTref � TemdÞ2

q
: This signal measured the dis-

crepancy between automatic and manual estimates.

A small value for ê indicates a strong relation between

an IMF (Temd) and a manual definition of tremor

(Tref). Thus, in practice, a small ê is a good evidence

that Temd has a physical meaning related to tremor

activity. The identification of such a physical meaning

is the main focus in this paper.

An additional investigation showing how the activ-

ities of tremor and voluntary movement were per-

ceived in the frequency domain was also performed.

For this purpose, the HS and MHS were employed as

indicated in Fig. 5.

Figure 6 shows an example of a signal manually

decomposed into its constituents, i.e. the voluntary

movement and tremor.

5 Results

5.1 Automatic detection of tremor

The signal presented in Fig. 7 (top) was detected from

a patient with essential tremor performing the draw

spiral test. The signal components, or IMFs, obtained

by means of the EMD are also shown in this figure.

The first component identified as IMF1 is the finest

time-scale component, whereas the last component

(IMF4) is the largest time-scale component.

A comparative study between different IMFs and

the tremor signal (obtained manually) showed that the

IMF1, which is the component that best represents the

high frequencies of the signal, was an accurate estimate

of the tremor, i.e. this component had a very strong

Fig. 4 Tasks of the
measurement session: a rest, b
reaching for an object, c
drawing spiral, d arm
outstretched, e touching nose,
f moving a cup

Fig. 5 Block diagram showing the sequence of analyses per-
formed in this study. First the detected signal x was filtered and
digitized in order to yield the time-series y. In a further step this
signal was decomposed into tremor (Tref) and voluntary
movement (VMref). This was manually performed by means of
two distinct digital filters. The same signal y was also automat-
ically decomposed via EMD, and the automatically estimated
tremor Temd was compared to Tref. The components provided by
the EMD, or imfs, were employed for a further analysis of the
signal y in the frequency domain
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physical meaning. This observation is illustrated in

Fig. 8. The manual estimate of the tremor is in the top

of the figure, its automatic estimate, or IMF1, is in the

middle, and the estimated error, ê; between those two

signals is shown in the bottom. Note that the error is

very small.

The same analysis for the signal in Fig. 7 was carried

out for all available data sets. It was also noted that the

voluntary movement can be obtained by the summa-

tion of all available IMFs but the first one, which

represented the tremor (see Fig. 9).

This investigation showed that the first IMF was

always a precise estimate of the tremor. This accuracy

was quantified by the mean square error signal,
�e ¼ meanðêÞ: The average and standard deviation of

distinct signal errors �e was estimated. The results show

that a very small error, 0.09±0.19�, was obtained for all

pathologies. Note that due to the fact that majority of

patients suffers from essential tremor the results are

only representative for the tremor activity related to

this pathology. Nevertheless, the results indicate that

the method is able to estimate tremor activity for all

pathologies evaluated. Additional investigation should

be pursued in order to validate the performance of this

technique in the estimation of tremorous movements

from other pathologies.

5.2 Visualization of tremor on the Hilbert spectrum

It has been shown that a particular intrinsic function is

physically related to the tremor. Besides the repre-

sentation of embedded components in the signal those

functions may also be employed for a time–frequency

analysis of time-series. This is obtained via the HS.

In practice it was observed that the HS could de-

scribe the variation of the energy and frequency of

tremor and voluntary movement activities distinctly.
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Fig. 6 Example of a manual decomposition of the movement
profile (x) of an essential tremor patient performing the task of
drawing a spiral. Digital filters are employed for estimation of
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That is, the energy of tremor and voluntary movement

was very well localized in time and frequency. This is

illustrated in Figs. 10 and 11 for patients with different

disorders. The oscillations around 5 Hz are related to

tremor activities whereas the others are related to

other components of the global movement.

In these figures, the spectrogram was also included

for comparison with the HS. From their analysis it is

possible to conclude that the spectrogram allows for a

global description of the energy of the signal, whereas

the HS provides information about local changes of

energy over time.
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5.3 Analysis of the power based on the marginal

Hilbert spectrum

The integration of HS over time results in the MHS.

The MHS describes how the signal energy varies as a

function of the frequency. Solid line of Fig. 13 shows

the MHS for a patient with essential tremor perform-

ing the task of touching the nose. Note that the dis-

tribution provided by the MHS is bimodal and that its

first peak is related to the voluntary movement,

whereas the second is the energy of tremor activity.

6 Discussion

In this section, an analysis of the results of the above

proposed methodology is reported. We mainly focus

on the application of EMD as a new tool for the study

of tremor time series. EMD has been identified as a

very useful tool for an automatic decomposition of the

signal into tremor and voluntary signal. The results

presented in this paper showed that the first IMF could

accurately estimate the tremor. This was observed in

the whole data set, which had more than 2,000 samples

of signals with tremor activity, collected from 31 pa-

tients performing six different tasks.

Currently, there is no available technique that can

accurately model the tremor [25, 29]. Most of the

methodologies are based on the assumption that the

tremor is stationary or is similar to sine wave. The fact

that the tremor time series could be described by an

IMF states that the tremor signal, for all patients

considered in this study, satisfies two conditions [18]:

(1) in the whole data set, the number of extrema and

the number of zero crossings must be either equal or

differ at most by one; (2) at any point, the mean value

of the envelope defined by the local maxima and the

envelope defined by the local minima is zero. These

observations suggest that any investigation concerning

the modeling of tremor should take into account those

properties.

The major discrepancies between the signal esti-

mated by EMD (IMF1) and the tremor manually

decomposed (Tref) were found in the patients with

unclear tremors. This may be explained by the fact that

in those patients the movement profile was also cor-

rupted by other involuntary movements besides tre-

mor, such as spasms. A spasm is a sudden, involuntary

contraction of a muscle or a group of muscles. Spas-

modic muscle contraction may be due to a large

number of medical conditions, including pathologies of

the central nervous system, likely originating in those

Fig. 10 Hilbert spectrum and
spectrogram of an essential
tremor patient performing the
task of keeping the arms
outstretched. Note that the
energy of the involuntary
movement is clearly
separated from the energy of
the voluntary movement on
the HS. This separation is not
so evident on the
spectrogram. The high levels
of energy activity on the HS
could be perceived when the
patient is performing the task
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parts of the brain concerned with motor function, such

as the basal ganglia. For this reason it is very common

that a number of patients affected by tremor also

present spasmodic activity [23]. Spasms are a non-tre-

morous type of involuntary movement aperiodic, er-

ratic, unpredictable at our current state of

understanding, and can overlap in frequency with

voluntary motion [23]. These movements can occur at

higher frequencies overlapping the tremor frequency.

In addition, these involuntary movements present an

unstable and non-stationary behavior. This highlights

the fact that in practice, any manual or arbitrary

decomposition based on pre-fixed band-pass filters

might result in an inaccurate estimate of the tremor

movement or any other relevant physiological event

(e.g. spasms), see Fig. 7.

In order to provide further evidence regarding the

accuracy of the EMD in the estimate of tremorous

movement an additional experiment was carried out.

The first IMF was compared with the raw signal with

tremorous activity obtained from the patient at rest.

This signal was detected from a parkinsonian patient

because in this condition the tremorous movement

occurred when the patient had his arms at rest with the

hands resting on the thighs, i.e no voluntary movement

existed. The results of this experiment are shown in

Fig. 12. In the top of this figure the original signal is

shown. In the middle, the EMD estimate for the tre-

mor is presented, and in the bottom the square error

between those signals is depicted. This result not only

demonstrated the accuracy of the EMD estimate of the

tremorous movement, but also supported the idea that

the main source of error in the automatic estimate of

tremor is due to the manual decomposition process

(based on pre-fixed band-pass filters) used as reference.

A more detailed analysis of the IMF components

indicates that the second IMF could estimate non-tre-

morous type of involuntary movements, such as

spasms, [23], see Fig. 7 where the spasm movement

present at time t=15 s is highlighted in the IMF2. The

automatic identification of these movements is very

important in order to help their understanding, as to

date there is no technique able to identify these

movements [5]. Further investigation correlating the

signal provided by EMD estimation of spasmodic

movements and EMG signals from the muscles that

execute these movements will be carried out in order

to validate this supposition.

Having obtained the IMF components, the Hilbert

transform can be applied to each component and the

instantaneous frequency can be computed, according

to Eqs. 1–3. The HS enables the representation of the

Fig. 11 Hilbert spectrum and
spectrogram of a Parkinson
tremor patient performing the
task of reaching for an object.
The spectrogram could not
show local variation of
energy. Note that different
from the HS presented in
Fig. 10 the energy of the
tremor is concentrated when
the limbs are at rest, or within
the first 10 s. This is a
characteristic of Parkinsonian
patients
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amplitude and the instantaneous frequency of the input

signal as a function of time in which the amplitude

could be contoured on the time–frequency plane. Since

the tremorous movements are well described by the

first IMF, this method is a very useful tool for visuali-

zation of energy activity of tremor.

The description of the energy of the tremor on the

HS is important because it allows for a good visuali-

zation of how the frequency and energy of the tremor

vary over time. With this tool it is possible to clearly

identify the onset and offset of tremor activity, as well

as its frequency and amplitude changes over the time

(see Figs. 10, 11). These techniques could be very

useful to perform objective measurements of any kind

of tremor and can therefore be used to perform tremor

functional assessment.

Due to its oscillatory characteristic, tremor is well

suited to spectral analysis such as the FT, which is the

most popular method of tremor quantification [25].

FFT-based spectral methods model the input signal as

stationary periodic signal. Yet tremor amplitude and

frequency are time-varying [11, 12, 24, 25], and there-

fore it is desirable to develop quantitative methods

which do not assume stationarity. The MHS offers a

measure of the total amplitude (or energy) contribu-

tion from each frequency value over the entire data

span being able to precisely detect the energy activities

of tremor and voluntary movements. In the Fourier

representation, the existence of energy at a frequency,

x, means a component of a sine or a cosine wave

persisted through the time span of the data. Here, the

existence of energy at a frequency, x, means only that,

in the whole time span of data, there is a greater

likelihood for such wave to have appeared locally.

Figure 13 shows a comparison between the Fourier

spectrum and the MHS. It is clear that the MHS gives

us a more precise spectrum, i.e. without energy

spreading. In this example, a digital high-pass band

filter with cutoff frequency set at 0.1 Hz, was employed

for attenuating the very low frequency components of

the signal. These components could obscure the

interpretation of the FT power spectrum. The com-

parison between the MHS and the FT power spectrum

shows that both techniques are able to localize high

levels of energy below 1 Hz, and between 4 and 7 Hz.

However, in this example the FT power spectrum

shows higher spectral variation. Akay [1] showed,

through the analysis of synthetic signals, that this en-

ergy variation may be related to spurious information

introduced by the technique.

7 Conclusion

This paper introduced EMD as a novel tool for analysis

of tremor time series. The main advantage of this

Fig. 12 Comparison between
tremulous activity (Tref

* ),
detected from a parkinsonian
patient executing no
voluntary movement, with the
automatic estimate provided
by the EMD (IMF1). The
square error between those
signal is shown in the bottom
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technique is that it allows an automatic estimate of the

tremorous movement in the different pathologies

considered in this paper. Additional investigation

should be pursued in order to validate the performance

of this technique in the estimation of tremorous

movements from other pathologies.

The authors believe that there is an evidence that

EMD could identify other types of involuntary move-

ments besides tremor, such as spasms. Nevertheless,

this hypothesis should be validated by means of future

investigation correlating involuntary movement activ-

ity and EMG signals from the muscles involved in

generating these movements.

The technique presented is a high-resolution meth-

od that may be used as an alternative to Fourier-based

analysis, which is the standard technique to the study of

tremor time series. However, a detailed comparative

study considering the HS and other joint time–fre-

quency distributions (e.g. spectrogram, scalogram,

autoregressive models, Wigner–Ville distribution)

should be performed, in the study of tremor, to better

understand the advantages and disadvantages of these

techniques. Independent of such a study this research

has shown that the HS has a promising application in

the analysis of tremor.

The application of this technique introduces new

attributes to the tremorous signal such as instantaneous

amplitude, instantaneous phase, and instantaneous

frequency. These attributes open the research field in

the tremor field. Future work will be focused on the use

of these parameters as parameters for the diagnosis of

tremor pathologies.
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