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Abstract: Robust generation of motor commands for real-time contrtd@motion with artificial means is crucial for
human safety. This paper addresses the combination of fofemence for determination of rules with a non
linear oscillator system, as generators of motor commamdhé control of human leg joints during walking,
by means of external gait compensators, e.g. exoskeldtorjonal electrical stimulation or hybrid systems.
The response of the proposed method is evaluated for vargatn stride frequency and step length. The
testing during gait conditions is performed consideringrtial sensing as feedback in a simulation study. The
reference data considered is obtained in multiple experisneith healthy subjects walking with a control-
lable exoskeleton designed to compensate quadriceps esakA model of the operation of the knee joint
compensation provided by the exoskeleton is obtained asarde to evaluate the method based on real data.
The results demonstrate the benefits of both incorporadiigeafuzzy inference system in cyclical decision
making for generation of motor commands and b) the dynamaptation of the timing parameters of the
external compensator provided by the van der Pol oscillator

1 INTRODUCTION 1.1 Gait Compensation

Robust generation of motor commands for real-time A \yide range of external gait compensators, e.g. ex-
control of locomotion with artificial means is cru-  sskeletons, functional electrical stimulation or hybrid
cial for human safety. Broadly, current active ex- gystems, have been considered to restore human gait.
ternal compensators of pathological gait under re- | particular leg exoskeletons or orthoses, can be pre-
search can be conflgurgd as functional electrical stim- g.ribed for cerebrovascular accident, polyo myelitis
ula_tors (FES), (Popovic et al., 1999), (Skelly and 4, cerebral palsy patients with leg muscle weakness,
Chizeck, 2001) controllable leg exoskeletons or or- iy grder to provide knee stability, reducing falling risk
thoses, (Blaya and Herr, 2004), (Irby et al., 1999), anq enabling a certain degree of mobility.

(Moreno et al., 2005) or as a combination of both, In order to control an exoskeleton, it is not clear

known as hybrid systems, (Gharooni et al,, 2000), the hypothesis that instantaneous control of trajec-
(Goldfarb and Durfee, 1996). From the control point ypothes . : a
tory of the joint angle is essential for the lower limb

of view, the design of robust controller of locomo- svstem. since the reduced mechanical outout —ioint
tion with such devices, towards real life application, y T . . put —¢
torque— limits its transitory response, in relation with

must be easy to customise, adapt dynamically 1o typ- the inertial properties of the musculoskeletal system

ical variations in gait pase and preferably should in- ; "
corporate a coordinated development with the user. (Franken, 1995). _VeIOC|ty or position C.OerI loops
are more appropriate and safe in training and reha-

bilitation applications where controlled generation of
joint trajectories is required, with application of oscil-
latory signals and modulation techniques during gait
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Figure 1: Mechanical adaptation for gait compensation dur-
ing one gait cycle at the knee joint.

cycles for training subjects following neural/motor in-
juries.

Our previous work has consisted in the implemen-
tation of intermittent control of resistance of the knee
joint with an unilateral exoskeleton applying selec-

CONTROL OF GAIT

1.2 Rulebased Control

Reliability of control in such a wearable solution for
pathological cases is a critical issue that has an impact
in human safety.
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Figure 3: Typical normal gait pattern of foot and shank seg-
ments rotations and rotational velocities (sagittal pjaiue-
ing a walking task at 34 m/min speed, with the cable-driven

tively different constant stiffnesses depending on gait exoskeleton, after training of the subject. A system with a
phase, to approach more natural profiles and avoid cable triggers the knee mechanism (onset) depending on a

collapsing of the knee and risk of falling, see fig. 2.
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Figure 2: Controllable ambulatory exoskeleton.

Under this approach, a knee actuator is controlled

to apply a given impedande¢; in the stance phase,
during a period of time ensuring the joint stability
and shift during swing phase releasing the joint for a
free swing while applyingl, (K1 >> K>), for smooth

fixed degree of dorsiflexion.

The output of the controller is the motor com-
mand for the actuator, characterized by two param-
eters: activatiomnsetandperiod The activation on-
sets during each stride are calculated by rule-based
conditions, evaluated according to segments orienta-
tion or rate velocity (See pattern during stance phase,
figure 3). The system is a reactive controller perform-
ing according to the motion of the leg. The criteria to
cyclically adapt the activation period (pulse width) of
the actuator is defined considering temporal parame-
ters relative to stance phase of current S(k) and past
S(k-1) strides, and initial conditions S(0), given by
average expected values.
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condition g mechanism | | dynamics
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Figure 4: Control scheme for walking.

Experimental trials have demonstrated short-term
adaptation of human motor system when apply-

transition and storage/recover of energy to assist theing functional compensations with customized tun-

leg extension, see figure 1.

ning of the discrete rule-based controllers ,(Moreno,
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2006). The adaptation of cyclical activation, has of the cable mechanism to provide a comfortable gait
demonstrated proper results at self-preferred constantpattern (see table 1). The gait velocity and step length
speeds. The next proposed method is an improvementariations were defined according to average values
intended to provide the required dynamical adaptation taken from Perry, (Perry, 1999), consisting in feasi-

to changes of step frequency/length by the user. ble combinations of 100%, 70%, 60% and 50%. Rate
gyroscopes fixed at the shank and leg segments of the
1.3 Bipedal walking with Central external device were used to measure rotational veloc-
Pattern Generators (CPGS): ities along the sagittal plane. Motions of interest oc-

cur at normal (2.6 km/h) and low (2 km/h) gait speeds,
and therefore, signals outside the band frequency re-
. lated to gait kinematics (0.3—20 Hz), are rejected from
It has been demonstrated previously how the use ofine sensor outputs with -3 dB low pass filters, refer
the dynamical systems paradigm can realize a walk- (Moreno et al., 2006) to for details. A precision angu-
ing behavior in robotic walking platforms (Veskos |ar position sensor was fixed at the knee joint to track
and Demiris, 2006). The neural architecture has the knee joint angle in the sagittal plane. A resistive
demonstrated successful operation in swinging and pressure sensor (5 mm in diameter active area, 0.30
planar walking in a bipedal platform, incorporating mm thickness) is used to monitor the activation status
van der Pol oscilators as generators of motor com- of the knee actuator.
mands. o _ Collection of input/ouput data is utilized to gener-
Medium and short term application of a walking  ate training and checking data sets, of both multiple

real-time controller for the mentioned application sce- gpeed trials, and constant speed separated trials.
narios, ought include mechanisms that provide adapt-

ability and stable response to variations of frequency 2 o \/glidation M odel
in the feedback signals, can led to an approach of co-
operative development with the user/environment. In
the following, the analysis of the response of the pro-
posed hybrid controller to variations in gait frequency
is evaluated with real data measured with the orthotic
walking platform.

Simulation

A robust Model describing the dynamics of the knee-
orthotic hinge system during cyclic walking condi-
tions can be used as a reference to analyze the per-
formance of the advanced control system. We pro-
pose the identification of the model the activation pat-
terns provided by the cable driven exoskeleton, with
time-series of kinematic data. A broadly used signal

2 METHODS processing paradigm is the state-space model. De-
fined by two equations, the state-space model has
21 Gait Patternswith K nee Joint been broadly applied in signal processing (Smith and
Brown, 2003). A first equation describes how the hid-
Compensator

den state or latent process is observed and a second
i ) _(state) equation that defines the evolution of the pro-
Subjects wearing an exoskeleton, need to adapt their,qgg through time. Based on the formulation given by
walking strategy to drive the system to successfully (ayerkamp et al., 1996), we propose identification of
switch between two knee spring damper configura- 4 my|tiple-input single-output continuous-time model

tions. During the entrainm_ent of the subject with the {51 the experimentally collected input and output
controllable exoskeleton it is necessary to reach a cer-yat4

tain ankle dorsiflexion angle which is variable during Considering the state-space model in the innova-
normal gait. Although this angle is adjustable, sub- 4ns form

jects change their gait pattern until they learn to use dx(t)
the exoskeleton. The learning process (which can be = AXO+Bu) 1)
seen as an adaptation) in the use of the controllable yt) = Cx(t)+Du(t) )

exoskeleton has been previously studied in (Forner-
Cordero et al., 2006). In order to obtain sampled whereu(t) denotes the sampled inputs, being the
data of different gait speeds, experimental trials with foot and shank rotations in the sagittal plane dur-
a healthy subject have been conducted after the adaping walking, for continuous measurements at 100 Hz
tation process, consisting in walking back and forth sampling frequency, with transitions from low to high
along a 10 meter path, with definition of the step speed, and progressive variations in step length and
length with marks on the floor and the gait speed by given the measured output referengg;), as the en-
means of a metronome, and systematic adjustmentdrained knee joint status (actuator activation period)
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Table 1: Systematic variations of healthy subject walkiritthe cable driven prototype (* Not feasible combinatipons

Percentage Step length[m] Stride length[m] Speed[m/s]

100 0.73 1.46 1.35 094 0.81 0.67*

70 0.51 1.02 0.94* 0.66 0.56 0.47

60 0.44 0.88 0.81* 0.56 0.48 0.40

50 0.37 0.73 0.67* 0.47 040 0.33
Cadence (step/min)| 111 78 67 56
Metronome (bpm) 1.85 130 1.11 0.93

for normal walking,x(t) is the internal state of the 2.3 Architecture
system andA,B,C,D] are the deterministic system
matrices. The control scheme consists of different modules (see
The reference sampled input and output dgta figure 6). A fuzzy inference system with two inputs
andy(t) is obtained from experiments with healthy and a single output node is identified and trained to
subjects wearing a orthotic walking platform, manu- map the inputs and trigger the actuator. The crisp out-
ally adjusted at each velocity to trigger the knee actu- put of the fuzzy inference system during each cycle
ator based on the ankle dorsiflexion. is critical in providing transition between restrained
The goal of the state-space model identification knee flexion in stance to a free swinging leg. The
process implemented in MATLAB s to find the sys- activation period of the knee actuator (pulse width)
tem matrice$A, B,C, D] according to the model struc-  during the swing phase is cyclically adapted by a
ture. This resulted in a second order model as the bestsecond module composed by an nonlinear oscilla-
to the input-output behavior of the system, selected tor. This nonlinear system incorporates real-time es-
upon the analysis of the singular values (1st order, timated gait temporal parameters as feedback in the
53.23; 2nd order, 3.77; 3rd order, 0.34; 4th, 0.30). generation of an oscillatory signal which adapts the
The continuous-time model describes the relation duty cycle of an external compensator.
between the foot and shank segments angular veloci-
ties and the output activation at the knee joint actuator
for the range of tested speeds, by the state differential
equation 1 and the output equation 2, where

2.3.1 Fuzzy Inference System

Conventional PID controllers have been applied in the
control of cyclical movements in legs of paraplegic

A { 0.994 —0.063 ] ; (3)  subjects (Franken, 1995). Introduction of dynamical
—0.003 0933 adaptation of the rules commanding FES systems has
—3.05¢ 6 -8287°]. been investigated, in order to cover a wider range of

B 25 _-33%° |’ ) unsafe and uncertain situations in application of stim-

C — [1455 —0009]; ) ulation . A Sugeno system is suited for modeling non-

linear systems. A training scheme with a fuzzy mod-
Assuming the initial state as zero, from the evalu- eling network structure has been combined to develop

ation of the transient (impulse) response of the second® 9@t synthesis learning scheme, (Horikawa et al.,

order system, it can be concluded a stable system with1990). . )
tp = 0.5 s, as the time to reach the peak value, and a Obtaining a fuzzy system corresponds with ap-

settling timetq of approximately 10 s, after persistent Proximated reasoning, which refers to methodologies
excitation. to describe physical systems which include complex-

Evaluation of the response of the model compared ity due to nonlinearities and uncertainties. Let us sup-
against the external compensator operation is thenPOS€ that our unknown system is a black box only ca-

performed, with the checking data set corresponding pable of measuring a set of_|npu¢§._..,xn and outputs

to multiple speeds. The crossing zeros (time inter- Y. Ym. A fuzzy system with a crisp output and the
polation) of the oscillatory output signal during the following type of rules is to be obtained

steady state are detected as equivalent onset and offset R; : IF x; esS; and..andxm €sSm, THEN andesc (6)
timings of the measured events. The correlation coef-

ficient r2, calculated for the modeled and measured The fuzzy inference system is generated by means
outputs is 0.999. of the grid partition method. For the identification a
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Figure 5: Data of measured input/ouputs of healthy subjéitt the compensator, after adaptation, at multiple gaiedpe
and space-state model performance. (a) Knee joint meaaunrgd with external compensation, checking data set ofdbj F
angular velocity and (c) Shank angular velocity; (d) the suead activation status of the actuator (dotted line), rhodput

(dashed line) onset and offset timings given by the modetiés), and time difference per cycle.
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Figure 6: Hybrid architecture for control of gait externantpensation at knee level, based on inertial sensing datst F
module contains the fuzzy inference system with a crispudufjne second module contains a nonlinear system predicting
the activation period of the knee actuator as function dffgaguency (forced oscillator), with proprioceptive fbadk.

training data set is generated from the experimenta-with a supervised learning scheme. The functions of
tion. The identification method consists in the appli- given nodes in a layer are similar. For means of sim-
cation of the adaptive network fuzzy inference system plicity, we consider a first order Sugeno type model,
(ANFIS) proposed by Jang, (Jang, 1993), in order to as the inference system. Having the kinematic inputs,
build the fuzzy rules with membership functions to the outputE(t) and n fuzzy rules:

generate input/output data pairs. Iteratively, input pa-

rameters of the membership functions are learnt by Rn
means of back-propagation in an adaptive network

and while the parameters of output functions are opti-

mized by the least squares fitting method. Hdep-

IF 6 is A,, AND

THENE = pi6s + 67 + t

(7)

tive networkis a feedforward multilayered network, Gaussian membership functions have been se-

lected for smooth transition.
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type fuzzy rules were defined, with a network with whereTsT is the stance phase period in cycle i,
21 nodes. These rules were of AND (minimum) type andR, a frequency scaling factorTst is estimated
antecedent. The defuzzification method, calculating from consecutive local minima (peak) values from the
the output, is performed by the centroid method. The foot rotational velocity, as described in (Moreno et al.,
clustering radiug = 0.2 was adjusted for tunning. 2006).

The optimization process spanned 13 epochs, with the

training data set. The figure depicts the output surface 2.4 Hybrid Controller

of the final identified system given the two inputs.

Local minima values are detected from the output of
the fuzzy system, upon numerically integration. The
sensitivity of the local minima detector is given by
9, which corresponds to the minimum difference in
amplitude with the neighbor samples. With the cali-
brated gyroscopes raw datad & 40 was satisfactory
for all conditions. Thus, cyclically the fuzzy system
provides the activatioonsef the controller incorpo-
rates the output of the nonlinear oscillator to predict
the width t or duration period for the knee external
compensator, with

Output

[ S
® o & N o N &

-10

D
% (11)
S gt ety e col where D determines the duty cycle percentage. In-

Foot angular velocity [°/s]

Figure 7: Inputs (foot and shank angular velocities) output
(knee actuator activation) surface of the fuzzy system.

corporating the prediction given by the forced oscilla-
tor, D = 0.8 was defined and remained constant in all
further experiments.

An example of the hybrid controller for cyclic gait
2.3.2 Forced Nonlinear Oscillator at 0.94 m/s (stride length, 1.46 m) is depicted in fig. 8

The dynamic robustness of a pattern generator to

noise and other external disturbances can be improved3 RESULTS

by incorporating nonlinearities to the system. A van

der Pol oscillator, requires a reduced number of pa- The performance of the hybrid controller is compared
rameters, and has the advantages of robustness andith the validation model and the testing data set. The
ease of computational implementation. Such nonlin- mean errors and standard deviations are calculated,
ear system can be applied as an adaptive oscillatorconsidering 4 continuous gait cycles per each con-
during the swing phase to determine the time of acti- dition, for the output of the fuzzy inference system
vation of the external compensator. To unlock the fre- module and the nonlinear oscillator module (see Table
quency of the oscillator and provide it with adaptabil- 2). A negative error (in seconds) means anticipation
ity to the leg motion, the nonlinear system is forced to with respect to the reference. For the tested condi-
oscillate at a frequency, which depends on the spatio-tions, the maximum average error for the fuzzy rule-
temporal behavior of gait. Let us consider the forced based detection was 0.%%lemonstrating the robust-

nonlinear oscillator ness of a single fuzzy model to drastic variations in
stride frequency. The discrete rule-based method, pre-

[ltopx = vy (8) vious tests showed significantly better performance

y = 7“()(2 ~1)y— xt+Acost  (9) for the application of thresholds, during slow gait ve-

locities in comparison with the results with higher
with o as the natural frequengyas the damping velocities. The response With the fuzzy rule-based
parameter§ as the forcing frequency andl as the me_thod can be rggarded as uniform for the teste_d con-
amplitude of the forcing function. An approximate ditions. The maximum average error for the oscnlat_or
solution of the non-linear system, satisfying the initial WS 0-32sand therefore, the robustness to the varia-
conditions x = 0, y = 0 is calculated during each cycle tions in the timing of the generated motor commands

i with was observed. The evaluation with the continuous
TsT data set provide a good indication of the accuracy and
6 = 3 (10) robustness of the hybrid method.
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Figure 8: Example of the simulation results of the hybridtegsat a relative fast speed. Measured knee angle and reéeren
output given by validation model (top); Inputs (middle);ZZy inference system and forced linear oscillator outpiitise
hybrid system generates the triggers (continuous vettigad) and activation periods (dashed vertical lines).

Table 2: Results of the hybrid controller for the 12 testingditions. Mean errors and standard deviations with respehe
evaluation model output are calculated taking 4 contingaitscycles per each condition.

Fuzzy System Forced oscillator

Step length[m] ~ Speed [m/s]  Mean error [s] SD Mean error [s] SD
1.46 1.3505 0.0995 0.0123| 0.005 0.0451
1.46 0.94535 0.041 0.0744| -0.025 0.0719
1.46 0.8103 0.154 0.1847| -0.245 0.0806
1.022 0.6617 0.0685 0.0296| -0.06 0.051
1.022 0.5672 -0.042 0.0238| -0.17 0.0497
1.022 0.4726 -0.13 0.1238 | -0.1775 0.1072
0.876 0.56721 0.0335 0.023 -0.1275 0.0629
0.876 0.48618 -0.0125 0.0728| -0.1725 0.083
0.876 0.4051 -0.1075 0.12 -0.32 0.0668
0.73 0.47267 0.0025 0.031 -0.16 0.0462
0.73 0.4051 -0.1205 0.0689| -0.0625 0.0998
0.73 0.3376 -0.1915 0.1003| 0.15 0.2149

4 CONCLUSIONS

has been used in order to simulate the real mechani-
cal system (human leg and exoskeleton) in this study.
Further work includes a simulation study of the re-
sponse of the methos to external perturbations (foot
contact with the ground during the swing and obsta-
cles) and testing with subjects of the embedded appli-
cation.

The evaluation with the continuous data set provide a
good indication of the accuracy and robustness of the
hybrid method. For the tested conditions, the results
demonstrate a proper means to combine a learning
method which incorporates fuzziness with the adap-
tive nature of a non lineal oscillator, to generate mo-

tor commands to control gait. A validation model
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